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1. Introduction

Robot soccer has become popular over the last decade not only as a platform for education
and entertainment but as a test bed for adaptive control of dynamic systems in a multi-agent
collaborative environment (Messom, 1998). It is a powerful vehicle for exploration and
dissemination of scientific knowledge in a fun and exciting manner. The robot soccer
environment encompasses several technologies—embedded micro-controller based
hardware, wireless radio-frequency data transmission, dynamics and kinematics of motion,
motion control algorithms, real-time image capture and processing and multi-agent
collaboration.

The vision system is an integral component of modern autonomous mobile robots. With
robot soccer, the physical size of the robots in the micro-robot and small robot leagues limits
the power and space available, precluding the use of local cameras on the robots themselves.
This is overcome by using a global vision system, with one (or more for larger size fields)
cameras mounted over the playing field. The camera or cameras are connected to a vision
processor that determines the location and orientation of each robot and the location of the
ball relative to the playing field. This data is then passed to the strategy controller, which
determines how the team should respond to the current game situation, plans the
trajectories or paths of the robots under its control, and transmits the appropriate low-level
motor control commands to the robots, which enable them to execute the plan.

To manage complexity in collaborative robot systems, a hierarchical state transition based
supervisory control (STBS) system can be used (Sen Gupta et al.,, 2002; Sen Gupta et al.,
2004). However, the performance of such a system, or indeed any alternative higher-level
control system, deteriorates substantially if the objects are not located accurately because the
generic control functions to position and orient the robots are then no longer reliable.

The high speed and manoeuvrability of the robots make the game very dynamic. Accurate
control of high-speed micro-robots is essential for success within robot soccer. This makes
accurate, real-time detection of the position and orientation of objects of particular
importance as these greatly affect path-planning, prediction of moving targets and obstacle
avoidance. Each robot is identified in the global image by a “jacket” which consists of a
pattern of coloured patches. The location of these coloured patches within the image is used
to estimate the position and orientation of the robot within the playing area. The cameras
must therefore be calibrated to provide an accurate mapping between image coordinates
and world coordinates in terms of positions on the playing field (Bailey & Sen Gupta, 2004).
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The portable nature of robot soccer platforms means that every time the system is set up,
there are differences in the camera position and angle relative to the field. Each team has
their own camera, and both cannot be mounted exactly over the centre of the playing area. It
is also difficult to arrange the camera position so that it is perfectly perpendicular to the
playing surface. Consequently, each camera is looking down on the playing area at a slight
angle, which introduces a mild perspective distortion into the image. The size of the playing
area, combined with constraints on how high the camera may be mounted, require that a
wide angle lens be used. This can introduce significant barrel distortion within the image
obtained. Both of these effects are readily apparent in Fig. 1. The limited height of the
camera combined with the height of the robots means that each detected robot position is
also subject to parallax error. These factors must all be considered, and compensated for, to
obtain accurate estimates of the location and orientation of each robot.

Fig. 1. Example field, clearly showing lens distortion and mild perspective distortion.

2. Effects of distortion

At the minimum, any calibration must determine the location of the playing field within the
image. The simplest calibration (for single camera fields) is to assume that the camera is
aligned with the field and that there is no distortion. The column positions of the goal
mouths, Cr, and Crigit, and the row positions of the field edges at, or near, the centreline,
Rrop and Rpottom, Need to be located within the image. Then, given the known length, L, and
width, W, of the field, the estimated height of the camera, H, and the known height of the
robots, h, an object positioned at row R and column C within the image may be determined
relative to the centre of the field as
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The first term sets the centre of the field as the origin, the second scales from pixel units to
physical units, and the third term accounts for parallax distortion resulting from the height
of the robot (assuming that the camera is positioned over the centre of the field).

While this calibration is simple to perform, it will only be accurate for an ideal camera
positioned precisely in the centre of the field and aligned perpendicularly to the playing
field. Each deviation from ideal will introduce distortions in the image and calibration
eITorS.

2.1 Lens distortion

The most prevalent form of lens distortion is barrel distortion. It results from the lens having
a slightly higher magnification in the centre of the image than at the periphery. Barrel
distortion is particularly noticeable with wide-angle lenses such as those used with robot
soccer. While there are several different physical models of the lens distortion based on the
known characteristics of the lens (Basu & Licardie, 1995; Pers & Kovacic, 2002), the most
commonly used model is a generic radial Taylor series relating the ideal, undistorted
coordinates (x,,1.) to the distorted coordinates in the image (x4,y4):

x,=x,(T+mr] +mrt +.0) + (sl (r2+2x0)+ ZSZxMyu)(l + &1+ )

@)

Ya=VY. (1 I S L ) + (231xuyu +é& (r“2 + 2yf ))(1 rerl+ )

Both sets of coordinates have the centre of distortion as the origin, and > = x> +y>. The set
of parameters x and & characterise a particular lens. Note that the centre of distortion is
not necessarily the centre of the image (Willson & Shafer, 1994). For most lenses, two radial
and two tangential terms are sufficient (Li & Lavest, 1996), and most calibration methods
limit themselves to estimating these terms. A simple, one parameter, radial distortion model
is usually sufficient to account for most of the distortion (Li & Lavest, 1996):

ry=r,(1+xr}) ®)

This forward transform is most commonly used because in modelling the imaging process,
the image progresses from undistorted coordinates to distorted image coordinates.
Sometimes, however, the reverse transform is used. This swaps the roles of the two sets of
coordinates. Since the model is an arbitrary Taylor series expansion, either approach is valid
(although the coefficients will be different for the forward and reverse transforms). The first
order reverse transform is given by

r, =1,(1+Kr]) @)
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Effect on position

If the simple calibration was based on distances from the centre of the image, the position
error would increase with radius according to the radially dependent magnification.
However, since the calibration of eq. (1) sets the positions at the edges and ends of the field,
the position error there will be minimal. The absolute position errors should also be zero
near the centre of the image, increase with radius to a local maximum between the centre
and edges of the playing area, and decrease to zero again on an ellipse through the table
edge and goal points. Outside this ellipse, the errors will increase rapidly with distance,
having the greatest effect in the corners of the playing field.

Effect on orientation

Determining the effect of radial distortion on the angle is more complicated. Consider a
point in the undistorted image using radial coordinates (r,,¢). At this point, the lens
distortion results in a magnification

M=t )

Next, consider a test point offset from this by a small distance, , at an angle, ,, with a
magnification, M». If the magnification is constant (M>=M) then everything is scaled equally,
and by similar triangles, the angle to the test point will remain the same. This implies that if
the test point is in the tangential direction (6, —¢ =90°), there will be no angle error.
Similarly, since the distortion is radial, if the test point is aligned (8, — ¢ =0) the test point
will be stretched radially, but the angle will not change. These two considerations imply that
it is best to consider offsets in the tangential and radial direction. This geometry is shown in

Fig. 2.

Test point

Magnification

Magnification
. P
Fig. 2. Geometry for calculating the change as a result of radial lens distortion. The
distortion and scales have been exaggerated to make the effects visible.

After distortion, the angle to the test point becomes
M,rsin(6, — p)
M, (1, +rcos(0, — p))— Mr,
B M,rsin(6, — @)
M,rcos(6, — )+ (M, - M)z,

tan(gd - ¢) =

The test distance, 7, is small, therefore
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When the forward map of eq. (3) is used, eq. (8) becomes
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Since the magnification changes faster with increasing radius, the angle error (6, -6, ) will
also be larger further from the centre of distortion, and increase more rapidly in the
periphery.

2.2 Perspective distortion

Perspective distortion results when the line of sight of the camera is not perpendicular to the
plane of the playing area. This will occur when the camera is not directly over the centre of
the playing area, and it must be tilted to fit the complete playing area within the field of
view. A perspective transformation is given by

_ hlxu + thu + hS

e T TR
h,x, +hgy, +h
7% u Sy u 9 (10)

_hyx, +hgy, +hy
’ h7xu + hSyu + h9
where (x,y.) and (xsys) are the coordinates of an undistorted and distorted point
respectively. This is often represented in matrix form using a homogenous coordinate
system (Hartley & Zisserman, 2000):

ky,|=hy hs hsl|ly,|or P,=HP, (11)
h, h

The 3x3 transformation matrix, H, incorporates rotation, translation, scaling, skew, and
stretch as well as perspective distortion. Just considering perspective distortion and for
small tilt angles H simplifies to
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1 0 0
perspective = 0 1 O (12)
pe Py 1

The effect of this is to change the scale factor, k, in eq. (11), giving a position dependent
magnification. As a consequence, parallel lines converge, meeting somewhere on the
vanishing line given by

X, + +1=0 13
px u pyyu

Effect on position

Since the simple calibration sets four points on the edges of the playing area, these points
will have no error. In direction that the camera is tilted, k will be greater than 1, shrinking
the scene. The radial error will be positive, and the tangential errors will be towards the
direction line. In the opposite direction, the magnification is greater than 1. The radial error
will be negative, and the tangential errors will be away from the direction line. There will be
a line approximately across the middle of the playing area where

px, +py, +1=1 (14)

which will have no error. The angle of the line, and the severity of the errors will depend on
the angle and extent of the camera tilt respectively.

Effect on orientation

Again the distortion will depend on the change of magnification with position. As the
content becomes more compressed (closer to the vanishing line) angle distortion will
increase, because the slope of the magnification becomes steeper and the angle errors will be
greater. Without loss of generality, consider the camera tilted in the x direction (p,=0).
Consider a test point offset from (x,,y,) by distance r at an angle 6,. After distortion, the
offset becomes:

Ay = Y, +rsind, Y
Y 1+p.(x,+rcosf,) 1+p.x, 15
X, +rcosé, X, (15)
Ax = -
1+p,(x,+rcosb,) 1+p.x,
Hence, the angle of the test point after distortion is given by
tang. - AV (v, +7sin6,)(1+p.x,)—y,(1+p.(x, +rcosb,))
and, =—- =
‘ (x,+rcosf,)(1+px,)—x,(1+p,(x, +rcosb,))
_rsind, (1+p,x,)—y,p,rcosh, 16)

rcosé,

=(1+px,)tan6, —y,p,
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Along the line of sight (17,=0) there is no distortion radially or tangentially. However, other
orientations become compressed as the magnification causes foreshortening, especially as it
approaches the vanishing line. At other positions, angles that satisfy

tang, = Ju 17)
x

u

are not distorted. This is expected, since the perspective transformation will map straight
lines onto straight lines. Orientations perpendicular to the line of sight (&,=90°) are not
distorted. Other orientations are compressed by the perspective foreshortening.

The mild perspective distortion encountered with the robot soccer system will introduce
mild distortion. However, angle errors will be largest on the side of the field where the
image appears compressed.

2.3 Parallax distortion

In the absence of any other information, the camera is assumed to be at a known height, H,
directly above the centre of the robot soccer playing area. This allows the change in scale
associated with the known heights of the robots to be taken into account. Since the robot
jackets are always a fixed height above the playing surface, parallax correction simply
involves scaling the detected position relative to the position of the camera. Errors in
estimating the camera position will only introduce position errors; they will not affect the
angle.

H+AH

H ip H

h h
dd v dd v

Fig. 3. Parallax correction geometry. Left: the effect of lateral error; right: the effect of height
error. Note, the robot height, h, has been exaggerated for clarity.

Effect on position
Consider the geometry shown in Fig. 3. When the camera is offset laterally by P, an object at
location d in the playing area will appear at location v by projecting the height

(d-P)H _,_dH-Ph
H-h H-h

1)

However, if it is assumed that the camera is not offset, the parallax correction will estimate
the object position as d’. The error is given by
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o(H-h) _,_=Ph
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d—d= (19)
The lateral error is scaled by the relative heights of the robot and camera. This ratio is
typically 40 or 50, so a 5 cm camera offset will result in a 1 mm error in position. Note that
the error applies to everywhere in the playing area, independent of the object location.

An error in estimating the height of the camera by AH will also result in an error in location
of objects. In this case, the projection of the object position will be

,_ d(H +AH)

- (20)
H+AH-h

Again, given the assumptions in camera position, correcting this position for parallax will
result in an error in estimating the robot position of
H-h) —-dhAH

a-da=2 —d= 1)
H (H +AH - I)H

Since changing the height of the camera changes the parallax correction scale factor, the
error will be proportional to the distance from the camera location. There will be no error
directly below the camera, and the greatest errors will be seen in the corners of the playing
area.

2.4 Effects on game play

When considering the effects of location and orientation errors on game play, two situations
need to be considered. The first is local effects, for example when a robot is close to the ball
and manoeuvring to shoot the ball. The second is when the robot is far from play, but must
be brought quickly into play.

In the first situation, when the objects are relatively close to one another, what is most
important is the relative location of the objects. Since both objects will be subject to similar
distortions, they will have similar position errors. However, the difference in position errors
will result in an error in estimating the angle between the objects (indeed this was how
angle errors were estimated earlier in this section). While orientation errors may be
considered of greater importance, these will correlate with the angle errors from estimating
the relative position, making orientation errors less important for close work.

In contrast with this, at a distance the orientation errors are of greater importance, because
shooting a ball or instructing the robot to move rapidly will result in moving in the wrong
direction when the angle error is large. For slow play, this is less significant, because errors
can be corrected over a series of successive images as the object is moving. However at high
speed (speeds of over two metres per second are frequently encountered in robot soccer),
estimating the angles at the start of a manoeuvre is more critical.

Consequently, good calibration is critical for successful game play.

3. Standard calibration techniques

In computer vision, the approach of Tsai (Tsai, 1987) or some derivation is commonly used
to calibrate the relationship between pixels and real-world coordinates. These approaches



Automated camera calibration for robot soccer 319

estimate the position and orientation of the camera relative to a target, as well as estimating
the lens distortion parameters, and the intrinsic imaging parameters. Calibration requires a
dense set of calibration data points scattered throughout the image. These are usually
provided by a “target’ consisting of an array of spots, a grid, or a checkerboard pattern. From
the construction of the target, the relative positions of the target points are well known.
Within the captured image of the target, the known points are located and their
correspondence with the object established. A model of the imaging process is then adjusted
to make the target points match their measured image points.

The known location of the model enables target points to be measured in 3D world
coordinates. This coordinate system is used as the frame of reference. A rigid body
transformation (rotation and translation) is applied to the target points. This uses an
estimate of the camera pose (position and orientation in world coordinates) to transform the
points into a camera centred coordinate system. Then a projective transformation is
performed, based on the estimated lens focal length, giving 2D coordinates on the image
plane. Next, these are adjusted using the distortion model to account for distortions
introduced by the lens. Finally, the sensing element size and aspect ratio are used to
determine where the control points should appear in pixel coordinates. The coordinates
obtained from the model are compared with the coordinates measured from the image,
giving an error. The imaging parameters are then adjusted to minimise the error, resulting
in a full characterisation of the imaging model.

The camera and lens model is sufficiently non-linear to preclude a simple, direct calculation
of all of the parameters of the imaging model. Correcting imaging systems for distortion
therefore requires an iterative approach, for example using the Levenberg-Marquardt
method of minimising the mean squared error (Press et al., 1993). One complication of this
approach is that for convergence, the initial estimates of the model parameters must be
reasonably close to the final values. This is particularly so with the 3D rotation and
perspective transformation parameters.

Planar objects are simpler to construct accurately than full 3D objects. Unfortunately, only
knowing the location of points on a single plane is insufficient to determine a full imaging
model (Sturm & Maybank, 1999). Therefore, if a planar target is used, several images must
be taken of the target in a variety of poses to obtain full 3D information (Heikkila & Silven,
1996). Alternatively, a reduced model with one or two free parameters may be obtained
from a single image. For robot soccer, this is generally not too much of a problem since the
game is essentially planar.

A number of methods for performing the calibration for robot soccer are described in the
literature. Without providing a custom target, there are only a few data points available
from the robot soccer platform. The methods range from the minimum calibration described
in the previous section through to characterisation of full models of the imaging system.

The basic approach described in section 2 does not account for any distortions. A simple
approach was developed in (Weiss & Hildebrand, 2004) to account for the gross
characteristics of the distortion. The playing area was divided into four quadrants, based on
the centreline, and dividing the field in half longitudinally between the centres of the goals.
Each quadrant was corrected using bilinear interpolation. While this corrects the worst of
the position errors resulting from both lens and perspective distortion, it will only partially
correct orientation errors. The use of a bilinear transformation will also result in a small
jump in the orientation at the boundaries between adjacent quadrants.
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A direct approach of Tsai's calibration is to have a chequered cloth (as the calibration
pattern) that is rolled out over the playing area (Baltes, 2000). The corners of the squares on
the cloth provide a 2D grid of target points for calibration. The cloth must cover as much as
possible of the field of view of the camera. A limitation of this approach is that the
calibration is with respect to the cloth, rather than the field. Unless the cloth is positioned
carefully with respect to the field, this can introduce other errors.

This limitation may be overcome by directly using landmarks on the playing field as the
target locations. This approach is probably the most commonly used and is exemplified in
(Ball et al., 2004) where a sequence of predefined landmarks is manually clicked on within
the image of the field. Tsai's calibration method is then used to determine the imaging
model by matching the known locations with their image counterparts. Such approaches
based on manually selecting the target points within the image are subject to the accuracy
and judgement of the person locating the landmarks within the image. Target selection is
usually limited to the nearest pixel. While selecting more points will generally result in a
more accurate calibration by averaging the errors from the over-determined system, the
error minimisation cannot remove systematic errors. Manual landmark selection is also very
time-consuming.

The need to locate target points subjectively may be overcome by automating the calibration
procedure. Egorova (Egorova et al., 2005) uses the bounding box to find the largest object in
the image, and this is used to initialise the transform. A model of the field is transformed
using iterative global optimisation to make the image of the field match the transformed
model. While automatic, this procedure takes five to six seconds using a high end desktop
computer for the model parameters to converge.

A slightly different approach is taken by Klancar (Klancar et al., 2004). The distortion
correction is split into two stages: first the lens distortion is removed, and then the
perspective distortion parameters are estimated. This approach to lens distortion correction
is based on the observation that straight lines are invariant under a perspective (or
projective) transformation. Therefore, any deviation from straightness must be due to lens
distortion (Brown, 1971; Fryer et al., 1994; Park & Hong, 2001). This is the so-called “plumb-
line” approach, so named because when it was first used by (Brown, 1971), the straight lines
were literally plumb-lines hung within the image. (Klancar et al., 2004) uses a Hough
transform to find the major edges of the field. Three points are found along each line: one on
the centre and one at each end. A hyperbolic sine radial distortion model is used (Pers &
Kovacic, 2002), with the focal length optimised to make the three target points for each line
as close to collinear as possible. One limitation of Klancar’s approach is the assumption that
the centre of the image corresponds with the centre of distortion. However, errors within the
location of the distortion centre results in tangential distortion terms (Stein, 1997) which are
not considered with the model. The second stage of Klancar’s algorithm is to use the
convergence of parallel lines (at the vanishing points) to estimate the perspective
transformation component.

None of the approaches explicitly determines the camera location. Since they are all based
on 2D targets, they can only gain limited information on the camera height, resulting in a
limited ability to correct for parallax distortion. The limitations of the existing techniques led
us to develop an automatic method that overcomes these problems by basing the calibration
on a 3D model.
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4. Automatic calibration procedure

The calibration procedure is based on the principles first described in (Bailey, 2002). A three
stage solution is developed based on the “plumb-line” principle. In the first stage, a parabola
is fitted to each of the lines on the edge of the field. Without distortion, these should be
straight lines, so the quadratic component provides data for estimating the lens distortion. A
single parameter radial distortion model is used, with a closed form solution given for
determining the lens distortion parameter. In the second stage, homogenous coordinates are
used to model the perspective transformation. This is based on transforming the lines on the
edge of the field to their known locations. The final stage uses the 3D information inherent
in the field to obtain an estimate of the camera location (Bailey & Sen Gupta, 2008).

4.1 Edge detection

The first step is to find the edge of the playing field. The approach taken will depend on the
form of the field. Our initial work was based on micro-robots, where the playing field is
bounded by a short wall. The white edges apparent in Fig. 1 actually represent the inside
edge of the wall around the playing area, as shown in Fig. 4. In this case, the edge of the
playing area corresponds to the edge between the white of the wall and the black of the
playing surface. While detecting the edge between the black and white sounds
straightforward, it is not always as simple as that. Specular reflections off the black regions
can severely reduce the contrast in some situations, as can be seen in Fig. 5, particularly in
the bottom right corner of the image.

To camera
Black top
White
wall
" Black playing surface

Fig. 4. The edge of the playing area.

Two 3x3 directional Prewitt edge detection filters are used to detect both the top and bottom
edges of the walls on all four sides of the playing area. To obtain an accurate estimate of the
calibration parameters, it is necessary to detect the edges to sub-pixel accuracy. Consider
first the bottom edge of the wall along the side of the playing area in the top edge of the
image. Let the response of the filtered image be f[x,y]. Within the top 15% of the image, the
maximum filtered response is found in each column. Let the maximum in column x be
located on rowW Yuuxx. A parabola is fitted to the filter responses above and below this
maximum (perpendicular to the edge), and the edge pixel determined to sub-pixel location
as (Bailey, 2003):

+ f[x’ymax,x +1]_f[x’ymax,x _1]
4f[x’ymnx,x] - 2(f[x/yﬂmx/x + 1] + f[x/ymax,x - 1])

edge[X] =Y, (22)
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Fig. 5. As a result of lighting and specular reflection, the edge of the playing area may be
harder to detect.

A parabola is then fitted to all the detected edge points (x,edge[x]) along the length of the
edge. Let the parabola be y(x)=ax’+bx +c . The parabola coefficients are determined by
minimising the squared error

E=Y(ax*+bx+c— ealge[x])2 (23)

The error is minimised by taking partial derivatives of eq. (23) with respect to each of the
parameters 4, b, and ¢, and solving for when these are equal to zero. This results in the
following set of simultaneous equations, which are then solved for the parabola coefficients.

Yt Y Y |[a] | D xPedgelx]
Zx3 sz Zx b= Zx.edge[x] (24)
Yt x| > edge[x]

The resulting parabola may be subject to errors from noisy or misdetected points. The
accuracy may be improved considerably using robust fitting techniques. After initially
estimating the parabola, any outliers are removed from the data set, and the parabola
refitted to the remaining points. Two iterations are used, removing points more than 1 pixel
from the parabola in the first iteration, and removing those more that 0.5 pixel from the
parabola in the second iteration.

A similar process is used with the local minimum of the Prewitt filter to detect the top edge
of the wall. The process is repeated for the other walls in the bottom, left and right edges of
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the image. The robust fitting procedure automatically removes the pixels in the goal mouth
from the fit. The results of detecting the edges for the image in Fig. 1 are shown in Fig. 6.

Fig. 6. The detected walls from the image in Fig. 1.

4.2 Estimating the distortion centre

Before correcting for the lens distortion, it is necessary to estimate the centre of distortion.
With purely radial distortion, lines through the centre will remain straight. Therefore,
considering the parabola components, a line through the centre of distortion will have no
curvature (a=0). In general, the curvature of a line will increase the further it is from the
centre. It has been found that the curvature, 4, is approximately proportional to the axis
intercept, ¢, when the origin is at the centre of curvature (Bailey, 2002).

The x centre, xo, maybe determined by considering the vertical lines within the image (the
left and right ends of the field) and the y centre, yo, from the horizontal lines (the top and
bottom sides of the field). Consider the horizontal centre first. With just two lines, one at
each end of the field, the centre of distortion is given by

a,c, —a,C
x0:21 1-2

(25)

I =

With more than two lines available, this may be generalised by performing a least squares fit
between the intercept and the curvature:

YeaYe-Yaye
o= Zciai21—2u12q (26)
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The same equations may be used to estimate the y position of the centre, yo.
Once the centre has been estimated, it is necessary to offset the parabolas to make this the
origin. This involves substituting

X=x-x, @)
V=y-¥
into the equations for each parabola, y = ax* +bx +c to give
j=a(X+x,)" +b(X+x,)+c—
y=a( o) +b( 0) Yo (28)

= ax” + (2ax, +b)% + (ax +bx +c - y,)

and similarly for x = ay” + by +c with the x and y reversed.

Shifting the origin changes the parabola coefficients. In particular, the intercept changes, as a
result of the curvature and slope of the parabolas. Therefore, this step is usually repeated
two or three times to progressively refine the centre of distortion. The centre relative to the
original image is then given by the sum of successive offsets.

4.3 Estimating the aspect ratio

For pure radial distortion, the slopes of the a vs ¢ curve should be the same horizontally and
vertically. This is because the strength of the distortion depends only on the radius, and not
on the particular direction. When using an analogue camera and frame grabber, the pixel
clock of the frame grabber is not synchronised with the pixel clock of the sensor. Any
difference in these clock frequencies will result in aspect ratio distortion with the image
stretched or compressed horizontally by the ratio of the clock frequencies. This distortion is
not usually a problem with digital cameras, where the output pixels directly correspond to
sensing elements. However, aspect ratio distortion can also occur if the pixel pitch is
different horizontally and vertically.

To correct for aspect ratio distortion if necessary, the x axis can be scaled as ¥ =x/R . The
horizontal and vertical parabolas are affected by this transformation in different ways:

y=ax’+bx+c

(29)
=aR’%? +bRR +¢
and
. X a , b c
X 2, b 30
r=p=gY¥ TRV (30)

respectively. The scale factor, R, is chosen to make the slopes of a vs ¢ to be the same
horizontally and vertically. Let s, be the slope of a vs c for the horizontal parabolas and s, be
the slope for the vertical parabolas. The scale factor is then given by

R= s /s, (31)
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4.4 Estimating the lens distortion parameter

Since the aim is to transform from distorted image coordinates to undistorted coordinates,
the reverse transform of eq. (4) is used in this work. Consider first a distorted horizontal
line. It is represented by the parabola y, = ax; +bx, +c . The goal is to select the distortion
parameter, x, that converts this to a straight line. Substituting this into eq. (4) gives

v, =y (1+5(x +93))
:(ax§+bxd+c)(1+zc(x§+(axj +bxd+c)2)) (32)
=c(1+xc?)+b(1+3xc*)x, + (a +cx(3ac+3b” + 1))x§ + .

where the ... represents higher order terms. Unfortunately, this is in terms of x4 rather than
xu. If we consider points near the centre of the image (small x) then the higher order terms
are negligible so

x, =x,(1+xr})
~x,(1+xy3) (33)
~x,(1+xc?)
or

x
~ 34
T 14 kc? 59

Substituting this into eq. (32) gives
b(1 + 3xc?) N a+cx(3ac+3b* +1) , N

! (1 + /ccz)2

Yy, =c(1+ KCZ) + (35)

u

1+ xc?

Again, assuming points near the centre of the image, and neglecting the higher order terms,
eq. (35) will be a straight line if the coefficient of the quadratic term is set to zero. Solving
this for « gives

—a

— 36
" c(3ac+3b” +1) (36)

Each parabola (in both horizontal and vertical directions) will give separate estimates of « .
These are simply averaged to get a value of x that works reasonably well for all lines. (Note
that if there are any lines that pass close to the origin, a weighted average should be used
because the estimate of x from such lines is subject to numerical error (Bailey, 2002).)
Setting the quadratic term to zero, and ignoring the higher order terms, each parabola
becomes a line

_ b(1+3kc?)
1+ xc?
=myx, +d,

. x, +c(1+xc?)

(37)



326 Robot Soccer

and similarly for the vertical lines. The change in slope of the line at the intercept reflects the
angle distortion and is of a similar form to eq. (9). Although the result of eq. (37) is based on
the assumption of points close to the origin, in practise, the results are valid even for quite
severe distortions (Bailey, 2002).

4.5 Estimating the perspective transformation

After correcting for lens distortion, the edges of the playing area are straight. However, as a
result of perspective distortion, opposite edges may not necessarily be parallel. The origin is
also at the centre of distortion, rather than in more convenient field-centric coordinates. This
change of coordinates may involve translation and rotation in addition to just a perspective
map. Therefore the full homogenous transformation of eq. (11) will be used. The forward
transformation matrix, H, will transform from undistorted to distorted coordinates. To
correct the distortion, the reverse transformation is required:

P, =H'P, (38)

The transformation matrix, H, and its inverse H-1, have only 8 degrees of freedom since
scaling H by a constant will only change the scale factor k, but will leave the transformed
point unchanged. Each line has two parameters, so will therefore provide two constraints on
H. Therefore, four lines, one from each side of the playing field, are sufficient to determine
the perspective transformation.

The transformation of eq. (38) will transform points rather than lines. The line (from eq. (37))
may be represented using homogenous coordinates as

[m, -1 d,]/y|=0 or LP=0 (39)

=< R

where P is a point on the line. The perspective transform maps lines onto lines, therefore a
point on the distorted line (LsP4=0) will lie on the transformed line (L,P,=0) after correction.
Substituting into eq. (11) gives

L, =LH (40)
The horizontal lines, y =m x +d, , need to be mapped to their known location on the sides of
the playing area, at y=Y. Substituting into eq. (40) gives three equations in the coefficients of
H:
0=m,, —h, +dh,
~1=mh, —hs+d,h (41)
Y =mh, —hg +d,h
Although there are 3 equations, there are only two independent equations. The first

equation constrains the transformed line to be horizontal. The last two, taken together,
specify the vertical position of the line. The two constraint equations are therefore
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0=mh, —h,+dh,
‘ ‘ (42)

0=Ym,h, —Yhs +Yd,h, +mh, —hg+d h

Similarly, the vertical lines, x =m.,y +d,, need to be mapped to their known locations at the

ends of the field, at x=X.

0=-h, +mhy+dh,

43
0=-Xh, + Xm_ h, + Xd h, —h, + m hg +d_h, (*3)

For the robot soccer platform, each wall has two edges. The bottom edge of the wall maps to
the known position on the field. The bottom edge of each wall will therefore contribute two
equations. The top edge of the wall, however, is subject to parallax, so its absolution position
in the 2D reference is currently unknown. However, it should be still be horizontal or
vertical, as represented by the first constraint of eq. (42) or (43) respectively. These 12
constraints on the coefficients of H can be arranged in matrix form (showing only one set of
equations for each horizontal and vertical edge):

m, -1 d, 0 0 0 0 0 0]h
0 0 0 m¥y Y d¥om -1dln o on 0 g
00 0 1 m d 0 0 0:
X mX 4X 0 0 0 -1 m d|bh

Finding a nontrivial solution to this requires determining the null-space of the 12x9 matrix,
D. This can be found through singular value decomposition, and selecting the vector
corresponding to the smallest singular value (Press et al., 1993). The alternative is to solve
directly using least squares. First, the square error is defined as

E=DH(DH)" = DHH'D’ (45)
Then the partial derivative is taken with respect to the coefficients of H:

6 pDR-0 (46)
of

DD is now a square 9x9 matrix, and H has eight independent unknowns. The simplest
solution is to fix one of the coefficients, and solve for the rest. Since the camera is
approximately perpendicular to the playing area, /iy can safely be set to 1. The redundant
bottom line of DTD can be dropped, and the right hand column of D7D gets transferred to
the right hand side. The remaining 8x8 system may be solved for /1; to /5. Once solved, the
elements are rearranged back into a 3x3 matrix for H, and each of the lines is transformed to
give two sets of parallel lines for the horizontal and vertical edges.

The result of applying the distortion correction to the input image is shown in Fig. 7.
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4.6 Estimating the camera position

The remaining step is to determine the camera position relative to the field. While in
principle, this can be obtained from the perspective transform matrix if the focal length and
sensor size are known, here they will be estimated directly from measurements on the field.
The basic principle is to back project the apparent positions of the top edges of the walls on
two sides. These will intersect at the camera location, giving both the height and lateral
position, as shown in Fig. 8.

T T T R T R T rr—
Fig. 7. The image after correcting for distortion. The blue + corresponds to the centre of
distortion, and the red + corresponds to the detected camera position. The camera height is
indicated in the scale on the bottom (10 cm per division).

Camera.position

-W/2 0C, Wwy/2
Fig. 8. Geometry for estimating the camera position.
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The image from the camera can be considered as a projection of every object onto the
playing field. Having corrected for distortion, the bottom edges of the walls will appear in
their true locations, and the top edges of the walls are offset by parallax.

Let the width of the playing area be W and wall height be h. Also let the width of the
projected side wall faces be T1, and T,. The height, H, and lateral offset of the camera from
the centre of the field, C,, may be determined from similar triangles:

) )
2-C+n, T,
Rearranging gives:
i(s-c)
T, = . 48
1y H-— h ( )
and similarly for the other wall
h(% +C )
T =—2 v/ 49
2y H-h ( )
Equations (48) and (49) can be solved to give the camera location
T, -T,
c,=| 2w |W (50)
'\, +T, )2
- 1)
T , sz
Similar geometrical considerations may be applied along the length of the field to give
L= TZx _Tlx £ (52)
ST +T, )2
__ +h (53)
Tl.t + TZ.t

where L is the length of the playing field and Ty, and T, are the width of the projected end
walls.

Equations (50) to (53) give four independent equations for three unknowns. Measurement
limitations and noise usually result in equations (51) and (53) giving different estimates of
the camera height. In such situations, it is usual to determine the output values (C,, C,, and
H) that are most consistent with the input data (T1., T2, T1y, and T2,). For a given camera
location, the error between the corresponding input and measurement can be obtained from
eq. (48) as

(54)
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and similarly for each of the other inputs. The camera location can then be chosen that
minimises the total squared error
E*=E; +E; +E] +E;, (55)

2y

This can be found by taking partial derivatives of eq. (55) with respect to each of the camera
location variables and solving for the result to 0:

OE?  4I°C, 2n(T,, - T,,)

- - -0 (56)
aC, (H-h) H-h
or
2hC,
ﬂ = sz - le (57)
Similarly
2
of = 2 =T,, - Ty, (58)
oC, H-h

The partial derivative with respect to the camera height is a little more complex because H
appears in the denominator of each of the terms. The partial derivative of the errors across
the width of the field is

o OB, O, _-h_[#(%+C))
oH oH ©oH (H-h)'| H-h

-W(T, +T2y)—2Cy(T2y—T1y)] (59)
This can be simplified by eliminating C, through substituting eq. (57)

OE,  —h (hW?
oH (H-hy\H-h

~W(T,, + sz)] (60)

Finally, combining the partial derivatives along the length of the field with those across the
width of the field gives:

o' OE) OE!  -h [ hW? hL?
=—+—-= -W(T,, +T,, )+ ——-L(T,,+T,,) |=0 61
OH OH oH (H—h)2 H-h (11/ Zy) (T, +T,) (61)
Solving for H gives
(W +1)h

H=

+h (62)
W(T,, +T,, )+ L(T,, + T,)

Finally, the result from eq. (62) can be substituted into equations (57) and (58) to give the
lateral position of the camera:



Automated camera calibration for robot soccer 331

%(W2+L2) (T B
W(T, +T,, )+ L(T +T,,) "

(c..C,)= T, T, -T,) (63)

The detected position of the camera is overlaid on the undistorted image in Fig. 7.

5. Applying the corrections

While it is possible to apply the distortion correction to the image prior to detecting the
objects, in practise this is computationally inefficient. Only a relatively small number of
objects need to be detected, and the distortion is not so severe as to preclude reliable
detection directly within the distorted image. Therefore, the robots and ball positions are
detected within the distorted image, with the position (and orientation in the case of the
robot players) returned in distorted image coordinates. The procedure for correcting the
image coordinates follows the calibration procedure described in the previous section.

5.1 Correcting object position
First, the detected feature location (x5y)) is offset relative to the centre of distortion from eq.
(27) and corrected for aspect ratio distortion if necessary:

(xd’yd):((xf7x0)/R’yf7yU) (64)

The lens distortion is then corrected by applying the radially dependent magnification from
eq. (4)

(xu’yu):(1+’(rd2)(xd’yd) (65)

This point is then transformed into field-centric coordinates and corrected for perspective
distortion by applying eq. (38)

kx, X,
ky, [=H"|y, (66)
k 1

where H- is the inverse of the matrix obtained from solving eq. (46) in fitting the field edges.
The resulting point is normalised by dividing through the left hand side of eq. (66) by k.
Finally, the feature point is corrected for parallax error. From similar triangles

x,-C, x,-C,

R B 67
H-h, H )

f

where /i is the known height of the object and (X,,§,) is the corrected location of the object
feature point. Equation (67), and its equivalent in the y direction, may be rearranged to give
the corrected feature location:

H-h h
(¥r.97) == (xm )+ (C.C) (68)
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The first term in eq. (68) is the scale factor that corrects for the height of the object, and the
second term compensates for the lateral position of the camera as in eq. (19).

5.2 Correcting object orientation

As outlined in section 2, the distortion will affect the detected orientation of objects within
the image. The simplest approach to correct the object orientation, 6, is to also transform a
test point (x;y:) that is offset a small distance, r, from the object location in the direction
specified by the orientation:

(x,,y,)=(xf,yf)+r(cos0,sin9) (69)

The offset should be of similar order to the offset used to measure the orientation in the
distorted image (for example half the width of the robot). The corrected orientation may
then be determined from the angle between the corrected test point and the corrected object
location:

f=tan” [y‘fJ (70)

X, =X,

6. Results and discussion

As the image in Fig. 7 shows, the calibration method is effective at correcting distortion
around the edge of the field. However, to have confidence that the model is actually
correcting points anywhere in the playing area, it is necessary to check the transformation at
a number of points scattered throughout the image. The calibration procedure was tested on
three fields. The first was a small (150 cm x 130 cm) 3-aside micro-robot playing field,
captured using a 320x240 analogue camera (Bailey & Sen Gupta, 2004). The second two were
larger (220 cm x 180 cm) 5-aside fields, captured using a 656x492 digital Firewire camera
(Bailey & Sen Gupta, 2008).

On the small field, a set of 76 points was extracted from throughout the playing area using
the field lines and free kick markers as input, as indicated in Fig. 9. The RMS residual error
after correcting the validation points was 1.75 mm, which corresponds to about 30% of the
width of a pixel. The lateral position of the camera was in error by 1.2 cm, which results in a
negligible parallax error (from eq. (19)). The height of the camera was over-estimated by
approximately 9 cm. This will give a maximum parallax error in the corners of the playing
field (from eq. (21)) of approximately 1.1 mm, which is again a fraction of a pixel.

For the larger fields (shown in Fig. 1 and Fig. 5) both resulted in a significantly improved
image that appeared to be free from major distortions (see Fig. 7). In both cases, the lateral
position of the camera was also measured with good accuracy, with a total lateral error of
0.9 cm and 1.0 cm respectively for the two fields. Again, the consequent parallax error (from
eq. (19)) is negligible. The error in the height, however, was significantly larger, with an
under-estimate of 8.6 cm for the image in Fig. 1 and an under-estimate of 33 cm for the
image in Fig. 5. Even this large height error results in an error of less than 3 mm in the
corners of the field (from eq. (21)). This is still less than one pixel at the resolution of the
image, and the error is significantly smaller over the rest of the field.
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Fig. 9. The 3-aside field with validation points marked.

The larger height errors are not completely unexpected, because the height is estimated by
back projecting the relatively small parallax resulting from a low wall. The wall only
occupied 3 pixels in the image of the small field and approximately 5 pixels in the larger
field. Measurement of this parallax requires sub-pixel accuracy to gain any meaningful
results. Any small errors in measuring the wall parallax are amplified to give a large error in
the estimate of the camera height. The lateral position is not affected by measurement errors
to the same extent, because it is based on the relative difference in parallax between the two
sides.

The cause of the large height error was examined in some detail in (Bailey & Sen Gupta,
2008). The under-estimate of the height was caused by the measured parallax of the walls
being larger than expected (although the error was still sub-pixel). Since the parallax
appears in the denominator of eq. (62), any over-estimate of the parallax will result in an
under-estimate of the height of the camera. Two factors contributed to this error. First, a
slight rounding of the profile at the top of the wall combined with specular reflection
resulted in the boundary between the white and black extending over the top of the wall,
increasing the apparent width. A second factor, which exacerbates this in Fig. 5, is that the
position of the lights gave a stronger specular component in the vicinity of the walls.

The other fields were less affected for the following reasons. Firstly, the lights were
positioned over the field rather than outside it. The different light angle means that these
fields were less prone to the specular reflection effects on the top corner of the wall
Secondly, the other fields were in a better condition, having been repainted more recently,
and with less rounding of the top edge of the walls. Consequently, the wall parallax was
able to be measured more accurately and the resultant errors were less significant.

6.1 Future work

The next step is to extend the work presented to the larger 11-aside field. These fields have
two cameras, one over each half of the field. The calibration principles will be the same. The
biggest difference is that the centreline will form one of the edges of the calibration, and this
does not have a height associated with it. This will limit the accuracy of the parallax
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correction data, although in principle the height of three walls should provide sufficient
data for estimating the camera location.

A further extension is to the Robocup league, which has no walls. Again two cameras are
required, one to capture each half of the field, as shown in Fig. 10. The image processing
algorithms will need to be modified for line detection rather than edge detection, and
another mechanism found to estimate the camera position. One approach currently being
experimented with is to place poles of known height in each corner and at each end of the
centre-line as can be seen in Fig. 10. The parabola based lens and perspective distortion
correction will be based on the edges of the field and centreline, and the markers on the
poles detected and back projected to locate the camera.

Fig. 10. Larger Robocup field without walls captured from two separate cameras. The poles
placed in each corner of the field allow calibration of camera position.

7. Conclusion

The new calibration method requires negligible time to execute. Apart from the command to
perform the calibration, it requires no user intervention, and is able to determine the model
parameters in a fraction of a second. The model parameters are then used to automatically
correct both the positions and orientations of the robots as determined from the distorted
images. It is demonstrated that just capturing data from around the field is sufficient for
correcting the whole playing area. The residual errors are significantly less than one pixel,
and are limited by the resolution of the captured images.

The lateral position of the camera was able to be estimated to within 1 cm accuracy. The
scaling effect of the parallax correction makes this error negligible. The height of the camera
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is harder to measure accurately, because it is back-projecting the short height of the playing
field walls. On two fields, it was within 8 cm, but on a third field the height was under-
estimated by 33 cm. However, even with this large error, the parallax error introduced in
estimating the robot position less than one pixel anywhere on the playing field. Accurate
height estimation requires good lighting, devoid of specular reflections near the walls, and
for the walls to be in good condition.

The significant advantage of this calibration procedure over others described in the
literature is that it is fully automated, and requires no additional setup or user intervention.
While not quite fast enough to process every image, the procedure is sufficiently fast to
perform recalibration even during set play (for example while preparing for a free kick) or a
short timeout. It is also sufficiently accurate to support sub-pixel localisation and
orientation.
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